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Abstract

ARCH and GARCH models are widely used to model financial market volatilities

in risk management applications. Considering a GARCH model with heavy-tailed in-

novations, we characterize the limiting distribution of an estimator of the conditional

Value-at-Risk (VaR), which corresponds to the extremal quantile of the conditional dis-

tribution of the GARCH process. We propose two methods, the normal approximation

method and the data tilting method, for constructing confidence intervals for the condi-

tional VaR estimator and assess their accuracies by simulation studies. Finally, we apply

the proposed approach to an energy market data set.
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1 Introduction

Two important empirical features about financial return series have drawn considerable

attentions in the field of financial econometrics, namely, heteroscedasticity and heavy-

tailed phenomenon. For example, the recent Séminaire Européen de Statistique reported

in Finkenstädt and Rootzén (2004) consists of excellent reviewing articles on a variety of

research topics related to these two features. As an attempt for capturing these stylized

empirical findings in financial data, ARCH and generalized ARCH (GARCH) models

were proposed to explicitly model the conditional second moments and their long-range

dependence structure. The classical ARCH/GARCH models are based on conditional

Gaussian innovations (see Engle (1982) and Bollerslev (1986)). They can be used to

model risk attributes such as volatility clustering and the long-range dependence structure

that exist in equity prices, financial indices, and foreign exchange rates (see Bollerslev et

al. (1992) and Taylor (1986)).

There is a growing literature on applications of ARCH/GARCH models in asset pric-

ing and risk management. With ubiquitous risks in financial markets, one of the most

important tasks of financial institutions is to evaluate the exposure to market risks. This

is commonly done by estimating the so-called Value-at-Risk (VaR). Market risks experi-

enced during extreme market movements can cause dramatic changes in portfolio values.

This can create huge profits or losses for financial institutions and may lead to financial

pitfalls as demonstrated in the Long Term Capital Management case. VaR measures

market risks by providing a single estimate of the worst possible financial loss to a port-

folio over a fixed time horizon for a given confidence (or, probability) level (see Jorion

(1997), Rachev and Mittnik (2000) and Duffie and Pan (1997) for a general introduction

and exposition of VaR). Mathematically, VaR is defined as a quantile of a probability

distribution, which is used to model an underlying portfolio value or its return. Financial

institutions and regulators use VaR to quantify market risks and set capital reserves for

market risks. For instance, traders at financial institutions often have their trading limits
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specified in terms of daily VaR of their trading books. Another appealing implication

of VaR is that it can be utilized as a vehicle for corporate self-insurance since VaR can

be interpreted as the amount of uninsured loss acceptable to a corporation (see Shimko

(1997)). A corporation should buy external insurance when the self-insurance losses, as

reflected by VaR measures, are greater than the cost of insurance by hedging.

In practice, a key risk measure for financial institutions based on the VaR concept is the

conditional VaR, which is the worst possible loss due to adverse market movements over

the next reporting period (e.g., a day or a week) conditional on current portfolio volatility

and market information. This quantity corresponds to the tails of the conditional profit-

and-loss (P&L) distribution of a portfolio. It is essentially the basis for setting portions of

the day-to-day operating capital reserves for many financial institutions. As the GARCH

models have been successfully applied in modeling the P&L distribution and the volatil-

ity structure of a portfolio of securities and other financial assets, the conditional VaR

of a GARCH model becomes an important quantity to study. An additional important

information of the conditional VaR is the robustness property of the conditional VaR

estimator. When financial institutions utilize conditional VaR for setting capital reserves,

they first need to estimate it based on some statistical models, either parametrically or

non-parametrically. While a large amount of efforts have been focused on producing new

and better conditional VaR estimates, two sources of errors may affect the estimation

accuracy significantly: model mis-specification error and estimation error due to the in-

herent noise in the data. We address these two problems by considering non-parametric

heavy-tailed distributions for the conditional innovations of a GARCH model. We then

obtain the confidence intervals for the conditional VaR estimators of the heavy-tailed

GARCH model. The knowledge of the confidence interval of the conditional VaR can be

highly valuable in applications such as setting prudent capital reserve requirements for

banks and conservative trading limits for traders or evaluating corporate self-insurance

exposures by providing upper and lower bounds, rather than a single point estimate, of
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the VaR estimator at certain confidence level. For instance, in the 1996 amendment to

the 1988 Basel Accord, a fudge factor of at least 3 is recommended for multiplying the

historical VaR in setting the market risk capital requirements to ensure a safety margin

for risk capitals. If the confidence interval bounds of VaR were employed instead, then it

would provide a better understanding and justification for setting the safety margin.

Empirical evidence has demonstrated that the conditional normal time series models

(e.g., the classical GARCH models) are inadequate in estimating the tail quantiles of

conditional return distributions (see Danielssson and de Vries (1997) for instance). This

prompts the gradual adoption of models with heavy-tailed innovations in risk modelling

practice. Many extensions of the classical GARCH models with heavy-tailed innovations

have been proposed. McNeil and Frey (2000) consider a GARCH model with gener-

alized Pareto distributed innovations and propose a two-step approach to estimate the

conditional VaR. While their idea seems intuitive, important statistical properties such

as confidence interval estimation and asymptotic properties remain largely unexplored.

There are two main objectives in this paper. We first derive the limiting distribution

of the extreme conditional VaR estimator in McNeil and Frey (2000). Instead of working

within the framework of generalized Pareto distribution as in McNeil and Frey, we deal

with the heavy-tailed innovations. In particular, besides the heavy-tailed feature, no

specific parametric distributional assumptions on the GARCH innovations are imposed.

A major advantage of this non-parametric approach is that it is applicable regardless of the

true data-generating mechanism of the GARCH innovations, as long as it has heavy tails.

As pointed out by Rachev and Mittnik (2000), one weakness of the VaR methodology

comes from model (mis-)specification risk. With a non-parametric model, this model

risk may be mitigated. Another advantage is that in addition to a VaR estimator, we

can provide a VaR interval so that financial institutions can calculate the risks of loss

exceeding the upper boundary of the VaR interval. This information amends the ability

of quantifying and controlling risks.
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Some existing work proposes to use the bootstrap for constructing confidence inter-

vals of a conditional VaR estimator (for instance, Dowd (2002) and Christoffersen and

Goncalves (2004)). Note that the bootstrap method is very computationally intensive be-

cause it requires repetitively solving non-linear optimizations in fitting GARCH models.

Moreover, the bootstrap method fails when the innovations have infinite fourth moment,

for example, when the innovation has a t-distribution with degrees of freedom 3 or 4. In

this case, a subsample bootstrap method is needed (see Hall and Yao (2003a)). However,

our methods are valid regardless of finite or infinite fourth moment of the innovation.

We propose two methods for constructing confidence intervals of a conditional VaR

estimator developed from the extreme value theory. One is the traditional normal approx-

imation method based on the asymptotic normality of the VaR estimator and the other

one is the recent data tilting method studied in Hall and Yao (2003b) and Peng and Qi

(2003).

The rest of the paper is organized as follows. In Section 2, we study the asymp-

totic behavior of the conditional VaR estimator by deriving its limiting distribution. We

then present two methods for constructing confidence intervals for the conditional VaR.

We perform a simulation study and test our approach on a real data set from energy

commodity markets in Section 3, while proofs are given in Section 5. We conclude in

Section 4.

2 Model Specification and Estimation Methodology

Suppose the data generating process for observations {Xt : t = · · · ,−1, 0, 1, 2, · · · , n, · · · }
follows a GARCH(p, q) model, namely,

Xt = σtεt, σ
2
t = c+

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j, (1)
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where c > 0, b1 ≥ 0, · · · , bp ≥ 0, a1 ≥ 0, · · · , aq ≥ 0 are constants, {εt} are a sequence
of independent identically distributed random variables with mean 0 and variance 1 (i.e.,

IID(0, 1)’s), and εt is independent of {Xt−k, k ≥ 1} for all t. Further assume that (1)
uniquely defines a strictly stationary process with EX2

t <∞, i.e.,

p∑
i=1

bi +

q∑
j=1

aj < 1. (2)

The 100α (0 < α < 1) percent one-step ahead conditional Value-at-Risk, based on obser-

vations {X1, · · · , Xn}, is defined as

xα,n = inf{x : P (Xn+1 ≤ x|Xn+1−k, k ≥ 1) ≥ α}.

It is a straightforward derivation from (1) that xα,n = σn+1x
0
α, where x

0
α is the 100α%

quantile of εn+1. Our aim is to construct a confidence interval for the extreme conditional

quantile xα,n (i.e., α = α(n) tends to zero or one as n→ ∞) through deriving the limiting
distribution of an estimator of xα,n and then applying two interval estimation methods.

2.1 Point Estimation

In this subsection, we study the asymptotic behavior of an estimator for xα,n used in

McNeil and Frey (2000) under the assumption that εt in (1) has heavy tails. Specifically,

the distribution function G of εt satisfies

lim
x→∞

1−G(xy)
1−G(x) = y

−γ and lim
x→∞

G(−x)
1−G(x) = d, (3)

for all y > 0, where γ > 2 ensures that Eε2t <∞ and d is some constant in [0,∞).
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Note that (2) implies that

σ2
t (a, b, c) = c

1−∑q
j=1 aj

+
∑p

i=1 biX
2
t−i

+
∑p

i=1 bi
∑∞

k=1

∑q
j1=1 · · ·

∑q
jk=1 aj1 · · · ajkX2

t−i−j1−···−jk
,

where a = (a1, · · · , aq) and b = (b1, · · · , bp). In practice we replace the above expression
by a truncated version

σ̃2
t (a, b, c) = c

1−∑q
j=1 aj

+
∑p

i=1 biX
2
t−i +

∑p
i=1 bi

∑∞
k=1

∑q
j1=1 · · ·

∑q
jk=1 aj1 · · · ajk

×X2
t−i−j1−···−jk

I(t− i− j1 − · · · − jk ≥ 1),

where I(·) is an indicator function.
Define

Lν(a, b, c) =
n∑

t=ν

{X2
t /σ̃

2
t (a, b, c) + log σ̃

2
t (a, b, c)},

where ν = ν(n) → ∞ and ν/n → 0 as n → ∞. Then the quasi maximum likelihood

estimator of (a, b, c) is defined as

(â, b̂, ĉ) = argmin(a,b,c)Lν(a, b, c).

Set

λn =




inf{λ > 0 : nP (ε2t ≥ λ) ≤ 1} if 2 < γ < 4

inf{λ > 0 : nE(ε4t I(ε2t ≤ λ)) ≤ λ2} if γ ≥ 4.

Then, it follows from Hall and Yao (2003a) that

â− a = Op(n
−1λn), b̂− b = Op(n

−1λn), ĉ− c = Op(n
−1λn).

Thus, εt can be estimated by ε̂t = Xt/σ̃t(â, b̂, ĉ) for t = ν, · · · , n. Next we use ε̂t’s to
estimate x0

α as follows. We only deal with the case α = α(n)→ 1 as n→ ∞.
Let ε̂m,1 ≤ · · · ≤ ε̂m,m denote the order statistics of ε̂ν , · · · , ε̂n with m ≡ n − ν + 1.
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Then γ can be estimated by the Hill estimator

γ̂ = {1
k

k∑
i=1

log
ε̂m,m−i+1

ε̂m,m−k

}−1,

where k = k(m)→ ∞ and k/m→ 0 as n→ ∞ (see Hill (1975)). Replacing x, 1−G(x),
γ in (3) by ε̂m,m−k,

1
m

∑n
i=1 I(ε̂i > x) and γ̂, respectively, we have 1−G(yε̂m,m−k) ∼ k

m
y−γ̂.

Since 1 − G(x0
α) = 1 − α, we solve k

m
y−γ̂ = 1 − α to obtain y = (1 − α)−1/γ̂( k

m
)1/γ̂ , i.e.,

x0
α ∼ yε̂m,m−k. So we estimate x

0
α by

x̂0
α = (1− α)−1/γ̂(

k

m
)1/γ̂ ε̂m,m−k,

i.e.,

x̂α,n = σ̃n+1(â, b̂, ĉ)x̂
0
α

is an estimator of xα,n.

Let U(x) denote the inverse function of 1
1−G(x)

. Suppose there exists some function

A(x)→ 0, as x→ ∞, such that

lim
x→∞

U(xy)/U(x)− y1/γ

A(x)
= y1/γ y

ρ − 1
ρ

, (4)

for all y > 0, where ρ < 0.

The following result characterizes the limiting distribution of the estimator x̂α,n.

Theorem 1. Suppose (1), (2), (3), (4) and the conditions in Theorem 2.2 of Hall and

Yao (2003a) hold. Assume

k = k(m)→ ∞, k/m→ 0,
√
kA(m/k)→ 0, n−1λn/A(m/k)→ 0, log(

k

m(1− α))/
√
k → 0

as n→ ∞. Then

γ̂
√
k

| log(k/(m(1− α)))|{
x̂α,n
xα,n

− 1} d→ N(0, 1),
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i.e.,

γ̂
√
k log(x̂α,n/xα,n)

| log(k/(m(1− α)))|
d→ N(0, 1).

Remark. As shown in Peng and Yao (2003), we can re-parameterize the model (1) in such

a way that the median of ε2t is equal to 1 while keeping E(εt) = 0 unchanged. Under this

new parametrization the parameters c and b1, · · · , bp differ from those in the old setting

by a common positive constant factor while the parameters a1, · · · , aq remain unchanged.
More importantly, the estimator x̂α,n remains the same, but now the parameters can be

estimated with convergence rate n−1/2 whenever Eε4t = ∞ or < ∞. Therefore, with this
parameter estimation, the condition n−1λn/A(m/k)→ 0 in Theorem 1 can be removed.

2.2 Interval Estimation

In this subsection we propose two methods to construct confidence intervals for the con-

ditional VaR xα,n as follows.

Method I: Normal approximation method. Based on Theorem 1 above, a confidence

interval with level β for xα,n is

Inβ = (x̂α,n exp{−zβ| log
k

m(1− α) |/(γ̂
√
k)}, x̂α,n exp{zβ| log k

m(1− α) |/(γ̂
√
k)}),

where zβ satisfies P (|N(0, 1)| ≤ zβ) = β.

Method II: Data tilting method. The general data tilting method was proposed

by Hall and Yao (2003b) to tilt time series data which includes the empirical likelihood

method as a special case. The empirical likelihood method, introduced in Owen (1988,

1990), is a nonparametric approach for constructing confidence regions. Like the bootstrap

and the jackknife, the empirical likelihood method does not need to specify a family of

distributions for the data. One of the advantages of empirical likelihood is that it enables

the shape of a region, such as the degree of asymmetry in a confidence interval, to be

determined automatically by the sample. In certain regular cases, confidence regions based
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on empirical likelihood are Bartlett correctable; see Hall & La Scala (1991) and DiCiccio

et al. (1991). For a more complete disclosure of recent references and development we

refer to the book by Owen (2001). As a generalization of the empirical likelihood method,

the data tilting method not only has all of those nice properties of the empirical likelihood

method, but also admits a wide range of distance functions. Recently Peng and Qi (2003)

applied the data tilting method in Hall and Yao (2003b) to construct a confidence interval

for the high quantile of a heavy tailed distribution based on iid observation. Here we apply

the data tilting method in Peng and Qi (2003) to the estimated innovations as follows.

Define δi = I(ε̂i ≥ ε̂m,m−k). First, for any fixed w = (wν , · · · , wn) such that wi ≥ 0

and
∑n

i=ν wi = 1, we solve

(γ̂(w), ĉ(w)) = argmin(γ,c)

n∑
i=ν

wi log((cγε̂
−γ−1
i )δi(1− cε̂−γ

m,m−k)
1−δi).

This results in

γ̂(w) =

∑n
i=ν wiδi∑n

i=ν wiδi(log ε̂i − log ε̂m,m−k)

and

ĉ(w) = ε̂
γ̂(w)
m,m−k

n∑
i=ν

wiδi.

Define

Dl(w) =




(l(1− l))−1(1−m−1
∑n

i=ν(mwi)
l) if l �= 0, 1

−m−1
∑n

i=ν log(mwi) if l = 0
∑n

i=ν wi log(mwi) if l = 1.

Next, solve

(2m)−1L(xα,n) = min
w
Dl(w)

subject to

wi ≥ 0,
n∑

i=ν

wi = 1, γ̂(w) log(xα,n/(σ̃n+1(â, b̂, ĉ)ε̂m,m−k)) = log((
n∑

i=ν

wiδi)/(1− α)).
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Here we only consider the case l = 1 since other cases are similar and the case l = 1 gives

good robustness properties. Put

A1(λ1) = 1− m− k
m

e−1−λ1 , A2(λ1) = A1(λ1)
log(xα,n/(σ̃n+1(â, b̂, ĉ)ε̂m,m−k))

log(A1(λ1)/(1− α)) .

Then, by the standard method of Lagrange multipliers, we have

wi =




1
m
e−1−λ1 , if δi = 0

1
m
exp{−1− λ1 + λ2(

log(xα,n/(σ̃n+1(â,b̂,ĉ)ε̂m,m−k))

A2(λ1)
− 1

A1(λ1)

−A1(λ1)

A2
2(λ1)

log(ε̂i/ε̂m,m−k) log(xα,n/(σ̃n+1(â, b̂, ĉ)ε̂m,m−k)))}, if δi = 1,

where λ1 and λ2 satisfy

n∑
i=ν

wi = 1 γ̂(w) log(xα,n/(σ̃n+1(â, b̂, ĉ)ε̂m,m−k)) = log(
n∑

i=ν

wiδi/(1− α)).

Theorem 2. Under the conditions of Theorem 1,

L(x0
α,n)

d→ χ2(1)

as n→ ∞, where x0
α,n denotes the true value of xα,n.

Based on this theorem, a confidence interval with level β for x0
α,n can be constructed

as

I tβ = {xα,n : L(xα,n) ≤ uβ},

where uβ is the β-level critical point of χ
2(1).

3 Simulation Study and Application

In this section, we investigate the finite sample behavior of our methods in construct-

ing confidence intervals for the extreme conditional Value-at-Risk. We also apply the
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methodology to a real data set taken from the energy (e.g., electricity) markets.

3.1 Simulation Study

We draw 1,000 samples of size 1, 000 from GARCH(1,1) models with c = 1.0, b1 = 0.2, a1 =

0.3 and c = 1.0, b1 = 0.4, a1 = 0.5, respectively. We choose the errors εt to have Student’s

t distribution with degrees of freedom d = 3, 5, 7, 9. We truncate the likelihood functions

defined in section 2.1 at ν = 20. We compute the coverage probabilities of the confidence

intervals of high quantile α = 0.99 based on both method I (Normal approximation) and

method II (data tilting) with a confidence level of 0.90. These coverage probabilities

are plotted against different sample fractions k = 20, 22, · · · , 120 in Figures 1-4 with the
upper/lower plots corresponding to the low/high persistence cases, respectively. From

Figures 1-4, the following are observed:

1. These two methods behave similarly while the normal approximation method ap-

pears to perform slightly better. This seems a bit surprising since the data tilting

method is better than the normal approximation methods in general. This may be

due to the fact that the data tilting method is much more sensitive to the accuracy

of estimating innovations than the normal approximation method. This reasoning

is confirmed by simulation studies under true innovations, i.e., using εt instead of ε̂t

in these two methods, which are not reported here.

2. Both methods become accurate when d becomes large. This is because the tail

probability is small for a large value of d, i.e., we only need to extrapolate data

slightly to reach a high quantile when d is large.

3. In contrast to point estimation, the choice of k for interval estimation is more im-

portant. This is always a difficult task to handle both theoretically and practically.

One way to deal with this issue is to develop more comparable different approaches

and hope to be able to choose k such that intervals derived from those methods
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are similar. Here we propose k = 1.5(log n)2, where n is the sample size. The cov-

erage probabilities corresponding to this particular choice of k are plotted by the

starred points in Figures 1–4, which indicate that such choice of k works for the

cases studied here.

3.2 Application

We apply method I to a historical time series data set: the log returns of real time (RT)

electricity locational marginal prices (LMPs) in the Pennsylvania-New Jersey-Maryland

(PJM) power market from April 1998 to September 2003; see Figure 5. Electricity markets

are relatively new markets. Electricity prices in the emerging power markets are much

more volatile than prices in other financial markets due to the almost non-storable nature

and the physical production characteristics of electricity.

In electricity markets, market participants such as utility companies are especially

concerned about the risks of electricity prices rising too high, since they have natural short

positions in electricity due to their obligations to provide electric power to customers. In

this example, we examine the 99 percent VaR at the right tails (i.e., the positive-return

side) of the conditional distribution of the 1-day electricity price return. Like the back

test in McNeil and Frey (2000), we calculate x̂tα,n on day t in the set T = {n, · · · , N − 1}
using a time window of n = 500 days each time where N >> n. We run our program

for a high quantile α = 0.99. For each day t ∈ T , we compute the confidence interval

based on method I with confidence level 0.90 by taking k = 30 and k = [1.5(log n)2] = 57.

Furthermore, we pay particular attention to the points which are less than the estimator

x̂tα,n, but greater than its left endpoint of I
n
β because these points are perceived to have

high risks even though they do not exceed our estimated conditional VaR. Thus, we may

call the area between the estimator x̂tα,n and its left endpoint of I
n
β a “risk-prone” region.

Knowing the risk-prone region can be quite valuable in applications such as setting trading

limits for traders or evaluating corporate self-insurance exposures since it provides bounds
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of the conditional VaR estimator at certain confidence level. We plot the log returns of

PJM real time LMPs, the VaR estimator, and its confidence interval in Figure 6 and mark

the points in the risk-prone region with squares. In a highly volatile market, conservative

market participants may want to employ the interval estimation instead of the point

estimator for their VaR estimation and then use the risk-prone region to monitor and

control their risks.

4 Conclusions

In this paper, we derive the limiting distribution of a high conditional VaR estimator of a

family of GARCH models with heavy-tailed innovations. With the limiting distribution,

a traditional normal approximation method is proposed to construct a confidence interval

of the conditional VaR estimator. An alternative method for constructing a confidence

interval based on the data tilting method is proposed as well. Monte Carlo simulation

studies with the GARCH models with Student-t innovations indicate that both methods

yield valid confidence intervals for the VaR estimator while the normal approximation has

a slightly higher coverage probability. Based on the confidence intervals, one can identify

a risk-prone region, which is given by the area between the conditional VaR estimator

and the left endpoint of its confidence interval. In practice, one should pay attention to

this entire region since it signifies high risk scenarios even though individual points in the

region may not exceed the estimated VaR threshold.

As a result of the non-parametric setting, the proposed methods are applicable to

GARCH models with general innovations including those with asymmetric tails. For

instance, they can be applied to asymmetric GARCH models as long as the tail balance

assumption (3) holds. Future work is expected to extend these methods to other risk

measures such as the expected shortfall probabilities with a broader class of time series

models.
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5 Proofs

Throughout this section we shall assume p = q = 1 since other cases can be shown in a

similar way. Define

Ŵn(u) = k
−1/2

n∑
t=ν

{I(1−G(ε̂t) ≤ k

m
u)− k

m
u}.

We first prove a lemma.

Lemma 1. As n→ ∞,

Ŵn(u)
d→ B(u) in D[0, 1],

where D[0, 1] denotes the space of functions on [0, 1] which is defined and equipped with

the Skorokhod topology (see Billingsley (1968)) and {B(u), u ≥ 0} is a standard Brownian

motion.

Proof. Define

δ̂n1 = nλ
−1
n (â1 − a1), δ̂n2 = nλ

−1
n (b̂1 − b1), δ̂n3 = nλ

−1
n (ĉ− c),

st(δ1, δ2, δ3) = [σ̃t(a1 + n
−1λnδ1, b1 + n

−1λnδ2, c+ n
−1λnδ3)− σt(a1, b1, c)]/σt(a1, b1, c),

En1(u, δ1, δ2, δ3) = k
−1/2

n∑
t=ν

{1−G(U(m
ku
)(1 + st(δ1, δ2, δ3)))− k

m
u},

En2(u, δ1, δ2, δ3) = k−1/2
∑n

t=ν{I(εt ≥ U(mku)(1 + s2(δ1, δ2, δ3)))
−(1−G(U(m

ku
)(1 + st(δ1, δ2, δ3)))) +

k
m
u− I(εt ≥ U(mku))}

and

Wn(u) = k
−1/2

n∑
t=ν

{I(1−G(εt) ≤ k

m
u)− k

m
u}.

Since

Ŵn(u)−Wn(u) = En1(u, δ̂n1, δ̂n2, δ̂n3) + En2(u, δ̂n1, δ̂n2, δ̂n3),

15



δ̂n1 = Op(1), δ̂n2 = Op(1), δ̂n3 = Op(1) andWn(u)
D→ B(u) in D[0, 1]. To prove this lemma,

it is sufficient to show that for any fixed ∆ > 0,

sup
−∆≤δ1,δ2,δ3≤∆

sup
0≤u≤1

|En1(u, δ1, δ2, δ3)| = op(1) (5)

and

sup
−∆≤δ1,δ2,δ3≤∆

sup
0≤u≤1

|En2(u, δ1, δ2, δ3)| = op(1). (6)

Define

s∗t (∆) = st(∆,∆,∆)

ant(u,∆) = I(εt ≥ U(mku)(1 + s∗t (∆)))
−(1−G(U(m

ku
)(1 + s∗t (∆)))) +

k
m
u− I(εt ≥ U(mku)).

Let N(n) = [M/A(m/k)] for any fixed M > 0, and ui = i/N(n), i = 0, 1, · · · , N(n).
When u ∈ [ur, ur+1], we have

k−1/2
∑n

t=ν ant(u,∆)

≤ k−1/2
∑n

t=ν ant(ur+1,∆)

+k−1/2
∑n

t=ν{1−G(U( m
kur+1

)(1 + s∗t (∆)))− k
m
ur+1}

−k−1/2
∑n

t=ν{1−G(U( m
kur
)(1 + s∗t (∆)))− k

m
ur}

+2k−1/2
∑n

t=ν{ k
m
ur+1 − k

m
ur}

+k−1/2
∑n

t=ν{I(εt ≥ U( m
kur+1

))− k
m
ur+1 +

k
m
ur − I(εt ≥ U( m

kur
))}

and

k−1/2
∑n

t=ν ant(u,∆)

≥ k−1/2
∑n

t=ν ant(ur,∆)

+k−1/2
∑n

t=ν{1−G(U( m
kur
)(1 + s∗t (∆)))− k

m
ur}

−k−1/2
∑n

t=ν{1−G(U( m
kur+1

)(1 + s∗t (∆)))− k
m
ur+1}

+3k−1/2
∑n

t=ν{ k
m
ur − k

m
ur+1}

+k−1/2
∑n

t=ν{I(εt ≥ U( m
kur
))− k

m
ur +

k
m
ur+1 − I(εt ≥ U( m

kur+1
))}.
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Hence

sup0≤u≤1 |k−1/2
∑n

t=ν ant(u,∆)|
≤ supr |k−1/2

∑n
t=ν ant(ur,∆)|

+2 supr |k−1/2
∑n

t=ν{1−G(U( m
kur
)(1 + s∗t (∆)))− k

m
ur}|

+3 supr k
−1/2

∑n
t=ν{ k

m
ur+1 − k

m
ur}

+supr |k−1/2
∑n

t=ν{I(εt ≥ U( m
kur
))− k

m
ur +

k
m
ur+1 − I(εt ≥ U( m

kur+1
))}|

= I1 + I2 + I3 + I4.

Let Fs = σ(εt, t ≤ s). Then

P (I1 > ε)

≤ N(n) supr P (|k−1/2
∑n

t=ν ant(ur,∆)| > ε)
≤ N(n)k−1ε−2 supr E(

∑n
t=ν ant(ur,∆))

2

= N(n)k−1ε−2 supr
∑n

t=ν E{E(a2
nt(ur,∆)|Ft−1)}

≤ N(n)k−1ε−2 supr
∑n

t=ν E| kmur − (1−G(U( m
kur
)(1 + s∗t (∆))))|

≤ N(n)k−1ε−2 supr
∑n

t=ν
k
m
urE|1− (1 + s∗t (∆))−γ|

+N(n)k−1ε−2 supr
∑n

t=ν
k
m
urE|1−G(U(m/(kur))(1+s∗t (∆)))

1−G(U(m/(kur)))
− (1 + s∗t (∆))−γ|

= II1 + II2.

Set

st1(δ1, δ2, δ3) = (σ̃t(a1 + n
−1λnδ1, b1 + n

−1λnδ2, c+ n
−1λnδ3)

−σ̃t(a1, b1, c))/(σt(a1, b1, c)),

st2 = (σ̃t(a1, b1, c)− σt(a1, b1, c))/(σt(a1, b1, c)),

and let D denote a generic positive constant. It is easy to check that




st(δ1, δ2, δ3) = st1(δ1, δ2, δ3) + st2

|s∗t (∆)| ≤ D
0 ≤ s∗t1(∆) ≤ Dn−1λn

(7)
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and

supt≥v E|st2|
≤ supt≥ν DE{b1

∑∞
j=1(a1)

jX2
t−i−jI(t− 1− j < 1)}

≤ D(a1)
ν .

(8)

By (7), (8) and ν/ log n→ ∞, we have

II1 ≤ DN(n)(n−1λn + (a1)
ν)→ 0. (9)

Using (4) and Lemma 2 of Draisma et al. (2001) we can show that

supr E|
(
(1−G(U( m

kur
)(1 + s∗t (∆)))/(1−G(U( m

kur
)))

−(1 + s∗t (∆))−γ
)
A−1( m

kur
)| → 0.

(10)

By Potter’s inequality (see Geluk and de Haan (1987)), we have

sup
r

|urA( m
kur

)/A(
m

k
)| ≤ D. (11)

So, by (10) and (11),

II2 → 0. (12)

It follows from (9) and (12) that

I1
p→ 0.

Similarly, we can show that

I2 ≤ 2 supr k−1/2
∑n

t=ν
k
m
ur|1−G(U(m/(kur))(1+s∗t (∆)))

1−G(U(m/(kur)))
− (1 + s∗t (∆))−γ|

+2 supr k
−1/2

∑n
t=ν

k
m
ur|(1 + s∗t (∆))−γ − 1|

p→ 0.

(13)

It is easy to show that

I4
p→ 0, I3 → 0. (14)

18



So

sup
0≤u≤1

|k−1/2

n∑
t=ν

ant(u,∆)| p→ o.

Similarly,

sup
0≤u≤1

|k−1/2

n∑
t=ν

ant(u,−∆)| p→ 0.

Note that

En2(u, δ1, δ2, δ3)

≤ k−1/2
∑n

t=ν ant(u,−∆)
+k−1/2

∑n
t=ν{(1−G(U(mku)(1 + s∗t (−∆)))− (1−G(U(mku)(1 + s∗t (∆)))}

and

En2(u, δ1, δ2, δ3)

≥ k−1/2
∑n

t=ν ant(u,∆)

+k−1/2
∑n

t=ν{(1−G(U(mku)(1 + s∗t (∆))))− (1−G(U(mku)(1 + s∗t (−∆)))}.

In a similar way to the proofs of (13) and (14), we can show that

sup
0≤u≤1

|k−1/2

n∑
t=ν

G(U(
m

ku
)(1 + s∗t (∆)))−G(U(

m

ku
)(1 + s∗t (−∆))}| p→ 0.

Thus

P (sup−∆≤δ1,δ2,δ3≤∆ sup0≤u≤1 |En2(u, δ1, δ2, δ3)| ≥ ε)
≤ P (sup0≤u≤1 |k−1/2

∑n
t=ν ant(u,∆)| ≥ ε/4)

+P (sup0≤u≤1 |k−1/2
∑n

t=ν ant(u,−∆)| ≥ ε/4)
+2P (sup0≤u≤1 |k−1/2

∑n
t=ν{G(U(mku)(1 + s∗t (∆)))

−G(U( n
ku
)(1 + s∗t (−∆)))}| ≥ ε/4)

→ 0,

i.e., (6) holds. Using the same arguments in the proofs of (13) and (14), it can be seen

that (5) holds. Hence the lemma. �
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Proof of Theorem 1. It can be shown by using Lemma 1 and the standard arguments

in Ferreira, de Haan and Peng (2003). �

Proof of Theorem 2. It can be shown by using Lemma 1, the arguments in Peng and

Qi (2003) and the fact that

σ̃n+1(â, b̂, ĉ)

σn+1(a, b, c)
− 1 = Op(n

−1λn) = op(1/
√
k).
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Figure 1: Coverage probability for Student t-distribution with degrees of freedom d = 3
as a function of k. Upper and lower panels plot the case c = 1, b1 = 0.2, a1 = 0.3 and
the case c = 1, b1 = 0.4, a1 = 0.5, respectively. The ∗ point in the plots correspond to
k = 1.5(log n)2, where n is the sample size.
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Figure 2: Coverage probability for Student t-distribution with degrees of freedom d = 5
as a function of k. Upper and lower panels plot the case c = 1, b1 = 0.2, a1 = 0.3 and
the case c = 1, b1 = 0.4, a1 = 0.5, respectively. The ∗ point in the plots correspond to
k = 1.5(log n)2, where n is the sample size.
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Figure 3: Coverage probability for Student t-distribution with degrees of freedom d = 7
as a function of k. Upper and lower panels plot the case c = 1, b1 = 0.2, a1 = 0.3 and
the case c = 1, b1 = 0.4, a1 = 0.5, respectively. The ∗ point in the plots correspond to
k = 1.5(log n)2, where n is the sample size.
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Figure 4: Coverage probability for Student t-distribution with degrees of freedom d = 9
as a function of k. Upper and lower panels plot the case c = 1, b1 = 0.2, a1 = 0.3 and
the case c = 1, b1 = 0.4, a1 = 0.5, respectively. The ∗ point in the plots correspond to
k = 1.5(log n)2, where n is the sample size.
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PJM Real Time Locational Marginal Price

Figure 5: The log returns of real time electricity locational marginal price in the
Pennsylvania-New Jersey-Maryland (PJM) power market from April 1998 to September
2003.
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Figure 6: The estimator x̂tα,n (broken line) and the endpoints (dotted lines) of its 90%
confidence intervals (CI) are plotted against the log return Xt+1 (solid line) of PJM
electricity price. Points Xt+1 such that Xt+1 < x̂tα,n but greater than the left endpoint
of the CI Inβ are marked by squares. Upper and lower panels correspond to k = 30 and
k = 1.5(log n)2 = 57, respectively.
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